Buscar este blog

jueves, 26 de marzo de 2015


matematicas-sexto-primaria
1.- Suma de números enteros
Vamos a distinguir tres casos:
a) Si todos los números son positivos se suman y el resultado es positivo:
3 + 4 + 8 = 15
b) Si todos los números son negativos se suman y el resultado es negativo:
(-3) + (-4) + (-8) = -15
c) Si se suman números positivos y negativos, los positivos suman y los negativos restan:
3 + (-4) + 5 + (-7)
Por un lado sumamos los números positivos: 3 + 5 = 8
Por otro lado sumamos los números negativos: (-4) + (-7) = -11
Ahora el resultado positivo suma y el negativo resta:
8 - 11 = -3
¿Cómo a 8 le podemos restar 11? Ponemos como minuendo la cifra mayor (11) y como sustraendo la menor (8), pero el resultado toma cómo signo el de la cifra mayor (en este ejemplo toma el signo " - " porque 11 es negativo)
11 - 8 = 3
Pero le ponemos el signo " - ", luego el resultado es "-3"
2.- Resta de números enteros
Una resta de números enteros se puede resolver como si se tratara de una suma, pero con una particularidad:
El símbolo de la resta le cambia el signo a la cifra que le sigue:
Por lo que:
Si el número que se resta es positivo lo convierte en negativo.
Si el número que se resta es negativo lo convierte en positivo.
Vamos a ver a continuación cuatro posibles casos:
a) A un número positivo le restamos otro número positivo:
3 - 2
Lo tratamos como si fuera una suma, pero a la cifra que se resta (2) le tenemos que cambiar el signo
= 3 + (-2)
Por un lado sumamos los números positivos: 3
Por otro lado sumamos los números negativos: (-2)
Ahora el resultado positivo suma y el negativo resta:
3 - 2 = 1
b) A un número positivo le restamos un número negativo:
3 - (-4)
Lo tratamos como si fuera una suma, pero a la cifra que se resta (-4) le tenemos que cambiar el signo
= 3 + (4)
Se trataría ya de una suma normal:
= 3 + (4) = 7
c) A un número negativo le restamos otro número negativo:
(-3) - (-4)
Lo tratamos como si fuera una suma, pero a la cifra que se resta (-4) le tenemos que cambiar el signo
= (-3) + (4)
Por un lado sumamos los números positivos: 4
Por otro lado sumamos los números negativos: (-3)
Ahora el resultado positivo suma y el negativo resta:
4 - 3 = 1
d) A un número negativo le restamos un número positivo:
(-3) - 4
Lo tratamos como si fuera una suma, pero a la cifra que se resta (4) le tenemos que cambiar el signo (-4)
= (-3) + (-4)
Se trataría de una suma de dos números negativos. Es una suma normal pero el resultado tiene signo negativo:


= (-3) + (-4) = -7

lunes, 16 de marzo de 2015

Física del sonido

Naturaleza del sonido

El sonido consiste en la propagación de una perturbación en un medio (en general el aire).
¿Cómo es la energía sonora? ¿Cómo se propaga la energía de un lugar a otro?
Para comprender mejor esto imaginemos un tubo muy largo lleno de aire. El aire está formado por una cantidad muy grande de pequeñas partículas o moléculas. Inicialmente, el aire dentro del tubo está en reposo (o más técnicamente, en equilibrio). Este equilibrio es dinámico ya que las moléculas se mueven en todas direcciones debido a la agitación térmica, pero con la particularidad de que están homogéneamente distribuidas (en cada cm3 de aire hay aproximadamente la misma cantidad de moléculas - 25 trillones).
Supongamos que se mueve rápidamente el pistón hacia el interior del tubo. Las moléculas que se encuentran junto al pistón serán empujadas, mientras que las que se encuentran alejadas no. En la zona del pistón el aire se encontrará más comprimido que lejos de él, es decir que la misma cantidad de aire ocupa menos espacio. El aire comprimido tiende a descomprimirse (como cuando abrimos la válvula de un neumático) desplazándose hacia la derecha y comprimiendo el aire próximo. Esta nueva compresión implica nuevamente una tendencia a descomprimirse, por lo que la perturbación original se propaga a lo largo del tubo alejándose de la fuente.
Es importante enfatizar que el aire no se mueve de un lugar a otro junto con el sonido. Hay trasmisión de energía pero no traslado de materia (comparar con el olfato).

Propagación

Características del medio - Para que la onda sonora se propague en un medio este debe ser elástico, tener masa e inercia. El aire posee además algunas características relevantes para la propagación del sonido:
  • La propagación es lineal (en el intervalo de sonidos audibles la aproximación es válida). Esto permite que diferentes ondas sonoras se propaguen por el mismo espacio al mismo tiempo sin afectarse.
  • El medio es no dispersivo. Por esta razón las ondas se propagan a la misma velocidad independientemente de su frecuencia o amplitud.
  • El medio es homogéneo. No existen direcciones de propagación privilegiadas por lo que el sonido se propaga esféricamente (en todas direcciones).

Ondas de sonido

Las ondas mecánicas son las que se propagan a través de un material (sólido, líquido, gaseoso). La velocidad de propagación depende de las propiedades elásticas e inerciales del medio. Hay dos tipos básicos de ondas mecánicas: transversales y longitudinales.
En las ondas longitudinales el desplazamiento de las partículas es paralelo a la dirección de propagación, mientras que en las ondas transversales es perpendicular.
Las ondas sonoras son longitudinales. En muchos instrumentos (como en la vibración de una cuerda) podemos identificar ondas transversales (así como en la membrana basilar dentro de la cóclea, en el oído interno).

Excitación periódica

La mayoría de los sonidos de la naturaleza no son producto de una única perturbación del aire, sino de múltiples perturbaciones sucesivas. Un ejemplo de esto es la excitación producida por un diapasón luego de ser golpeado, analizada la clase pasada.
Consideremos un movimiento periódico del pistón. (Ver animación de movimiento periódico del pistón). Sucesión de compresiones yrarefacciones del aire cerca del pistón genera una onda periódica que se propaga alejándose de la fuente. Luego de que la primera perturbación recorrió cierta distancia comienza la segunda, y así sucesivamente. La longitud de onda es la distancia entre perturbaciones sucesivas en el espacio. La frecuencia es la cantidad de perturbaciones por segundo (en ciclos por segundo o Hz).
Como ya mencionamos, al aire libre, las ondas sonoras se propagan en todas direcciones, como ondas esféricas. (Ver animación de radiación de un monopolo y un diapasón). En presencia de superficies reflectoras la onda deja de ser esférica para volverse sumamente compleja debido a la superposición con las reflexiones. Se denomina campo sonoro a la forma en que se distribuye el sonido en diversos puntos dentro de un determinado espacio como una sala o al aire libre.
Se denomina frente de onda al conjunto de puntos de la onda sonora que se encuentran en fase, o de otra forma, una superficie continua que es alcanzada por la perturbación en un instante. Dentro del tubo el frente de onda es plano, mientras que en el monopolo al aire libre el frente de onda es esférico. A determinada distancia las ondas esféricas pueden considerarse ondas planas.

lunes, 9 de marzo de 2015

Movimiento Armónico Simple (11°)

INTRODUCCIÓN
En la naturaleza hay muchos movimientos que se repiten a intervalos iguales de tiempo, estos son llamados movimientos periódicos. En Física se ha idealizado un tipo de movimiento oscilatorio, en el que se considera que sobre el sistema no existe la acción de las fuerzas de rozamiento, es decir, no existe disipación de energía y el movimiento se mantiene invariable, sin necesidad de comunicarle energía exterior a este. Este movimiento se llama MOVIMIENTO ARMÖNICO SIMPLE (MAS)
El movimiento Armónico Simple, un movimiento que se explica en el movimiento armónico de una partícula tiene como aplicaciones a los péndulos, es así que podemos estudiar el movimiento de este tipo de sistemas tan especiales, además de estudiar las expresiones de la Energía dentro del Movimiento Armónico Simple.

EL MOVIMIENTO ARMÓNICO SIMPLE
Definición: es un movimiento vibratorio bajo la acción de una fuerza recuperadora elástica, proporcional al desplazamiento y en ausencia de todo rozamiento.
Solemos decir que el sonido de una determinada nota musical se representa gráficamente por la función seno. Ésta representa un movimiento vibratorio llamado movimiento armónico simple, que es aquel que se obtiene cuando los desplazamientos del cuerpo vibrante son directamente proporcionales a las fuerzas causantes de este desplazamiento.
Un ejemplo de este movimiento se puede encontrar a partir del desplazamiento de un punto cualquiera alrededor de toda la longitud de una circunferencia.
Cuando un punto (P) recorre una circunferencia con velocidad uniforme, su proyección (Q) sobre cualquiera de los diámetros de esta, realiza un tipo de movimiento armónico simple. Cada vez que el punto se encuentre en uno de los cuatro cuadrantes de la circunferencia, se trazará una perpendicular desde el punto a un diámetro fijo de la circunferencia. A medida que el punto escogido se mueve a velocidad uniforme, el punto proyectado en el diámetro, realizará un movimiento oscilatorio rectilíneo.
Para representar gráficamente (en una función) el movimiento armónico simple de un punto, se toman como abscisas los tiempos medidos como fracciones del período (T/12, T/6, T/4...) que es el tiempo que este punto tarda en dar una vuelta completa a la circunferencia; y como a ordenadas las sucesivas prolongaciones del mismo. La resultante es una sinusoide, ya que la variación del tiempo t, se traduce como una variación delsin x, donde x es el ángulo que forma el radio con el semi-eje positivo de abscisas (x es proporcional al tiempo).


Elementos:
1. Oscilación o vibración: es el movimiento realizado desde cualquier posición hasta regresar de nuevo a ella pasando por las posiciones intermedias.
2. Elongación: es el desplazamiento de la partícula que oscila desde la posición de equilibrio hasta cualquier posición en un instante dado.
3. Amplitud: es la máxima elongación, es decir, el desplazamiento máximo a partir de la posición de equilibrio.
4. Periodo: es el tiempo requerido para realizar una oscilación o vibración completa. Se designa con la letra "t".
5. Frecuencia: es el número de oscilación o vibración realizadas en la unidad de tiempo.
6. Posición de equilibrio: es la posición en la cual no actúa ninguna fuerza neta sobre la partícula oscilante.

lunes, 2 de marzo de 2015

 CANTIDADES ESCALARES Y VECTORIALES.
Cantidad escalar o escalar: es aquella que se especifica por su magnitud y una unidad o especie.
Ejemplos: 10 Kg., 3m, 50 Km./h. Las cantidades escalares pueden sumarse o restarse normalmente con la condición de que sean de la misma especie por ejemplo:
3m + 5m = 8m
10ft^ 2 – 3 ft^ 2 = 7ft^2
 
5.2 CARACTERÍSTICAS DE UN VECTOR.
Objetivo: Conocerá las características de los vectores.
Cantidad vectorial o vector: Una cantidad vectorial o vector es aquella que tiene magnitud o tamaño, dirección u orientación y sentido positivo (+) o negativo (-) y punto de aplicación, pero una cantidad vectorial puede estar completamente especificada si sólo se da su magnitud y su dirección.
Ejemplos:1) 350 Newtons a 30° al norte del este, esto es nos movemos 30° hacia el norte desde el este.
2) 25 m al norte. 3) 125 Km./h a – 34° es decir 34° en sentido retrogrado.
 
Un vector se representa gráficamente por una flecha y se nombra con una letra mayúscula ej. A = 25 lb. a 120°. La dirección de un vector se puede indicar con un ángulo o con los puntos cardinales y un ángulo.
No se debe confundir desplazamiento con distancia, el desplazamiento esta indicado por una magnitud y un ángulo o dirección, mientras que la distancia es una cantidad escalar.
Por ejemplo si un vehículo va de un punto A a otro B puede realizar diferentes caminos o trayectorias en las cuales se puede distinguir estos dos conceptos de distancia y desplazamiento .
S1 y S2 Son las distancias que se recorren entre los puntos y son escalares. D1 y D2 son los desplazamientos vectoriales.
La distancia total será la cantidad escalar S1 + S2 en la cual se puede seguir cualquier trayectoria, y el desplazamiento total será la cantidad vectorial
R =D1 +D2
 
 TIPOS DE VECTORES.
Objetivo: Conocerá los diferentes tipos de vectores.
Vectores Colineales: Son aquellos que actúan en una misma línea de acción.
Ejemplos: En los instrumentos de cuerda, el punto donde está atada la cuerda (puente) se puede representar a la fuerza de tensión en un sentido y al punto donde se afina la cuerda (llave) será otra fuerza en sentido contrario. Otro ejemplo puede ser cuando se levanta un objeto con una cuerda, la fuerza que representa la tensión de la cuerda va hacia arriba y la fuerza que representa el peso del objeto hacia abajo.
Vectores Concurrentes. Son aquellos que parten de un mismo punto de aplicación. Ejemplos: Cuando dos aviones salen de un mismo lugar, cuando dos o mas cuerdas tiran del mismo punto o levantan un objeto del mismo punto.
Vector Resultante. (VR) El vector resultante en un sistema de vectores, es un vector que produce el mismo efecto en el sistema que los vectores componentes.
Vector Equilibrante. (VE) Es un vector igual en magnitud y dirección al vector resultante pero en sentido contrario es decir a 180°